Quiz | Proof |
---|---|
Name | |
Result | PASSED |
Score | 12 / 14 (85.7%) |
Passing score | 11.2 |
Quiz took | 33 min 02 sec |
Quiz finished at | 2022-08-05 12:26:57 |
The expression 2n represents
The expression 2n+1 represents
Which expressions represent three consecutive integers?
Which expressions represent three consecutive even integers?
Which expressions represent three consecutive odd integers?
What do the following lines of algebra prove? 2n + \left(2n+2\right) + \left(2n+4\right)\phantom{\rule{0ex}{0ex}}= 6n+6\phantom{\rule{0ex}{0ex}}= 6\left(n+1\right)
What do the following lines of algebra prove? \left(2n+1\right) + \left(2n+3\right) + \left(2n+5\right)\phantom{\rule{0ex}{0ex}}= 6n+9\phantom{\rule{0ex}{0ex}}= 3\left(2n+3\right)
What do the following lines of algebra prove? \left(2n{\right)}^{2} + \left(2m{\right)}^{2}\phantom{\rule{0ex}{0ex}}= 4{n}^{2} + 4{m}^{2}\phantom{\rule{0ex}{0ex}}= 4\left({n}^{2} + {m}^{2}\right)
What do the following lines of algebra prove? \left(2n+1{\right)}^{2} + \left(2m+1{\right)}^{2}\phantom{\rule{0ex}{0ex}}= \left(2n+1\right)\left(2n+1\right) + \left(2m+1\right)\left(2m+1\right)\phantom{\rule{0ex}{0ex}}= \left(4{n}^{2} +2n+2n+1\right) + \left(4{m}^{2} +2m+2m+1\right)\phantom{\rule{0ex}{0ex}}= \left(4{n}^{2} 4n+1\right) + \left(4{m}^{2} +4m+1\right)\phantom{\rule{0ex}{0ex}}= 4{n}^{2}+4n+4{m}^{2}+4m+2\phantom{\rule{0ex}{0ex}}= 2\left(2{n}^{2}+2n+2{m}^{2}+2m+1\right)
What do the following lines of algebra prove? {n}^{2} + \left(n+1{\right)}^{2}\phantom{\rule{0ex}{0ex}}= {n}^{2} + \left(n+1\right)\left(n+1\right)\phantom{\rule{0ex}{0ex}}= {n}^{2 }+ {n}^{2} + n + n + 1\phantom{\rule{0ex}{0ex}}= 2{n}^{2} + 2n + 1\phantom{\rule{0ex}{0ex}}= 2\left({n}^{2}+n\right) + 1
What do the following lines of algebra prove? {\left(2n\right)}^{2} + \left(2n+2{\right)}^{2}\phantom{\rule{0ex}{0ex}}= \left(2n{\right)}^{2}+\left(2n+2\right)\left(2n+2\right)\phantom{\rule{0ex}{0ex}}= 4{n}^{2 }+ \left(4{n}^{2} + 4n + 4n + 4\right)\phantom{\rule{0ex}{0ex}}= 4{n}^{2 }+ \left(4{n}^{2} + 8n + 4\right)\phantom{\rule{0ex}{0ex}}= 8{n}^{2} + 8n + 4\phantom{\rule{0ex}{0ex}}= 8\left({n}^{2}+n\right) + 4
What do the following lines of algebra prove? {\left(2n+1\right)}^{2} + \left(2n+3{\right)}^{2}\phantom{\rule{0ex}{0ex}}= \left(2n+1\right)\left(2n+1\right)+\left(2n+3\right)\left(2n+3\right)\phantom{\rule{0ex}{0ex}}= \left(4{n}^{2 }+ 2n + 2n + 1\right) + \left(4{n}^{2} + 6n + 6n + 9\right)\phantom{\rule{0ex}{0ex}}= \left(4{n}^{2 }+ 4n + 1\right) + \left(4{n}^{2} + 12n + 9\right)\phantom{\rule{0ex}{0ex}}= 8{n}^{2} + 16n + 10\phantom{\rule{0ex}{0ex}}= 8{n}^{2} + 16n + 8 + 2\phantom{\rule{0ex}{0ex}}= 8\left({n}^{2}+2n +1\right) + 2
What do the following lines of algebra prove about the values (n+1) and n? {\left(n+1\right)}^{2} - {n}^{2}\phantom{\rule{0ex}{0ex}}= \left(n+1\right)\left(n+1\right) - {n}^{2}\phantom{\rule{0ex}{0ex}}= \left({n}^{2 }+ n + n + 1\right) - {n}^{2}\phantom{\rule{0ex}{0ex}}= \left({n}^{2 }+ 2n + 1\right) - {n}^{2}\phantom{\rule{0ex}{0ex}}= 2n+1
It is possible to write out a proof to show that the sum of (n+2)(n+1) and (n+2) is always _____________________